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Let A be an n x n matrix with complex entries; x and y, n x 1 

vectors; and f, the bilinear form y’Ax. In [l] A. Ostrowski derives an 

identity for the determinant of f when certain linear relations exist among 

the components of x and y, which is a generalization of an identity due 
” 

to R. Sostak (consult Ostrowski’s article for a reference to Sostak’s 

paper). In this note we give another proof of Ostrowski’s identity which 

uses nothing more than partitioning of a matrix. 

We denote the unit matrix of order r by I,. 

Let k be a positive integer less than M. Suppose that B and C are 
k x n matrices with complex entries such that Bx = Cy = 0, B = [B,B,], 

C = [C,C,], and the k x k matrices B, and C, are nonsingular. Put 

det B, = b,, det C, = co. Let D be the (n - k) x (n - k) matrix of the 

bilinear form f when the first k components of x and y are eliminated, 

and d its determinant. Let d be the (n + k) x (n + k) matrix 

and 6 its determinant. Then Ostrowski’s identity is 

d = (- l)k(b,Co)-ld. (1) 

* Dedicated to Professor A. M. Ostrowski on his 76th birthday. 
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Then 

A,+@, Ik 
D 0 7 
0 0 1 

in view of (2). 

Put 

R, = 

Then 

0 0 Ik 
0 In-k 0 
Ik 0 0 1. 

Ik A,+A,$ Al 
L,LIARIR,R, = 0 D A,+ &‘A, . (3) 

0 0 Ik I 

It is easily seen that det L, = b,-l, det R, = c,,-l, det L, = det R, = 
1, and det R, = (- 1)“. Since the determinant of the right side of (3) 

is d, it follows that 

(- l)k(b,c,)-18 = a, 

which completes the proof of (1). 

As Ostrowski pointed out, (3) also implies the following: As usual, 

define the nullity of a matrix as the dimension of its null space, which 

equals the number of its columns less its rank. Let D have rank Y. Then 

D has nullity n - k - r. Now the matrix on the right side of (3) has rank 

2k + r and nullity n + k - (2k + Y) = n - k - 7. Since L,, R,, L,, R,, 
R, are nonsingular, the same is true of A. Thus 

the nullity of D equals the nullity of d. (4 
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