An Identity of A. Ostrowski*

MORRIS NEWMAN

National Bureau of Standards
Washington, D.C.

Communicated by Alan J. Hoffman

Let A be an $n \times n$ matrix with complex entries; x and $y, n \times 1$ vectors; and f, the bilinear form $y^{\prime} A x$. In [1] A. Ostrowski derives an identity for the determinant of f when certain linear relations exist among the components of x and y, which is a generalization of an identity due to R. Šostak (consult Ostrowski's article for a reference to Sostak's paper). In this note we give another proof of Ostrowski's identity which uses nothing more than partitioning of a matrix.

We denote the unit matrix of order r by I_{r}.
Let k be a positive integer less than n. Suppose that B and C are $k \times n$ matrices with complex entries such that $B x=C y=0, B=\left[B_{0} B_{1}\right]$, $C=\left[C_{0} C_{1}\right]$, and the $k \times k$ matrices B_{0} and C_{0} are nonsingular. Put $\operatorname{det} B_{0}=b_{0}$, $\operatorname{det} C_{0}=c_{0}$. Let D be the $(n-k) \times(n-k)$ matrix of the bilinear form f when the first k components of x and y are eliminated, and d its determinant. Let Δ be the $(n+k) \times(n+k)$ matrix

$$
\Delta=\left[\begin{array}{cc}
A & C^{\prime} \\
B & 0
\end{array}\right]
$$

and δ its determinant. Then Ostrowski's identity is

$$
\begin{equation*}
d=(-1)^{k}\left(b_{0} c_{0}\right)^{-1} \delta \tag{1}
\end{equation*}
$$

Partition x into $\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]$ and y into $\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$, where x_{0} and y_{0} are $k \times 1$ vectors.

[^0]Then

$$
B_{i 4} x_{4}+B_{1} x_{1} \cdots C_{0} y_{0}+C_{1} y_{1}=0
$$

Set

$$
B_{2}-B_{0}^{-1} B_{1}, \quad C_{2}=\cdots C_{0}^{1} C_{1},
$$

so that B_{2} and C_{2} are $k \times(n-k)$ matrices and $x_{0}=B_{2} x_{1}, y_{0}=\left(C_{2} y_{1}\right.$. Partition A into

$$
A \because\left|\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right|
$$

where A_{1} is a $k \times k$ matrix, A_{2} a $k \times(n-k)$ matrix, A_{3} an $(n-k) \times k$ matrix, and A_{4} an $(n-k) \times(n-k)$ matrix. Then upon elimination of the redundant vectors x_{0} and y_{0} the bilinear form $/$ becomes

$$
\begin{aligned}
l & \left.=y^{\prime} A x=y_{1}^{\prime} C_{2}^{\prime} y_{1}\right]\left[\begin{array} { l l }
{ A _ { 1 } } & { A _ { 2 } } \\
{ A _ { 3 } } & { A _ { 4 } }
\end{array} \left|\left|\begin{array}{c}
B_{2} x_{1} \\
x_{1}
\end{array}\right|\right.\right. \\
& =y_{1}^{\prime} D x_{1}
\end{aligned}
$$

where

$$
\begin{equation*}
I=C_{2}^{\prime} A_{1} B_{2}+A_{3} B_{2}+C_{2}^{\prime} A_{2}+A_{4} \tag{2}
\end{equation*}
$$

Put

$$
I_{\mathbf{1}}=\left|\begin{array}{ccc}
I_{k} & 0 & 0 \\
0 & I_{n-k} & 0 \\
0 & 0 & B_{0}{ }^{-1}
\end{array}\right|, \quad R_{\mathbf{1}}=\left|\begin{array}{ccc}
I_{k} & 0 & 0 \\
0 & I_{n} \cdots k & 0 \\
0 & 0 & \left(C_{0}\right)^{-1}
\end{array}\right| .
$$

Then

$$
L_{1} A R_{1}=\left|\begin{array}{ccc}
A_{1} & A_{3} & I_{k} \\
A_{3} & A_{4} & -C_{2}^{\prime} \\
I_{k} & \cdots & B_{2} \\
1
\end{array}\right|
$$

Put

$$
I_{2}=\left|\begin{array}{ccc}
I_{k} & 0 & 0 \\
C_{2}^{\prime} & I_{n-k} & 0 \\
0 & 0 & I_{k}
\end{array}\right|, \quad R_{\mathbf{2}}=\left|\begin{array}{ccc}
I_{k} & B_{2} & 0 \\
0 & I_{n-k} & 0 \\
0 & 0 & I_{k}
\end{array}\right| .
$$

Then

$$
L_{\mathbf{2}} L_{1} \Delta R_{1} R_{\mathbf{2}}=\left[\begin{array}{ccc}
A_{1} & A_{\mathbf{2}}+A_{1} B_{2} & I_{k} \\
A_{3}+C_{\mathbf{2}}{ }^{\prime} A_{1} & D & 0 \\
I_{k} & 0 & 0
\end{array}\right]
$$

in view of (2).
Put

$$
R_{3}=\left[\begin{array}{ccc}
0 & 0 & I_{k} \\
0 & I_{n-k} & 0 \\
I_{k} & 0 & 0
\end{array}\right] .
$$

Then

$$
L_{\mathbf{2}} L_{\mathbf{1}} \Delta R_{1} R_{\mathbf{2}} R_{\mathbf{3}}=\left[\begin{array}{ccc}
I_{k} & A_{2}+A_{1} B_{2} & A_{\mathbf{1}} \tag{3}\\
0 & D & A_{3}+C_{\mathbf{2}}{ }^{\prime} A_{1} \\
0 & 0 & I_{k}
\end{array}\right]
$$

It is easily seen that $\operatorname{det} L_{1}=b_{0}{ }^{-1}, \operatorname{det} R_{1}=c_{0}{ }^{-1}$, $\operatorname{det} L_{2}=\operatorname{det} R_{2}=$ 1 , and det $R_{3}=(-1)^{k}$. Since the determinant of the right side of (3) is d, it follows that

$$
(-1)^{k}\left(b_{0} c_{0}\right)^{-1} \delta=d
$$

which completes the proof of (1).
As Ostrowski pointed out, (3) also implies the following: As usual, define the nullity of a matrix as the dimension of its null space, which equals the number of its columns less its rank. Let D have rank r. Then D has nullity $n-k-r$. Now the matrix on the right side of (3) has rank $2 k+r$ and nullity $n+k-(2 k+r)=n-k-r$. Since $L_{1}, R_{1}, L_{2}, R_{2}$, R_{3} are nonsingular, the same is true of Δ. Thus

$$
\begin{equation*}
\text { the nullity of } D \text { equals the nullity of } \Delta \tag{4}
\end{equation*}
$$

REFERENCE

1 A. Ostrowski, Uber geränderte Determinanten und bedingte Trägheitsindizes quadratischer Formen. Monatsh. Math. 64(1960), 51-63.

[^0]: * Dedicated to Professor A. M. Ostrowski on his 75th birthday.

